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Abstract. The problem of cross-matching naturally intervenes in modern

astronomy to identify different observations of the same celestial objects [2, 3, 5].
Despite its simplicity, finding the most relevant algorithm for a given distribution
of observations remains challenging. Specifically, for a given a distribution, is

there an algorithm (taking as input only the observations and oblivious to their
distribution) maximizing the probability of producing the correct matching?
These notes present formally the problem and compile partial answers, in
particular for Gaussian distributions. We focus our attention in the case of

two catalogues, with a family of algorithms solving the assignment problem,
parameterized by the choice of a distance function. In the one-dimensional
case, the choice of the distance function does not impact the solution. In higher

dimensions, we prove the existence of a best configuration for the distance
function under mild assumptions. We also provide lower bounds of success for
all dimensions, and compare with numerical simulations.

1. Introduction

Suppose we are given distinct images of the same region of the sky using telescopes
from different locations, each containing thousands or millions of stars. The process
to group observations by the celestial object they represent is crucial to fully utilize
these observations, namely to enhance the chances of discovering new types of
sources [3]. Two main reasons make this problem challenging from a computational
perspective. First, as the number of observations grows, there is exponential
number of pairings – or groupings in the case of several telescopes – that are
admissible. Second, the uncertainty from that arises from the measurements (change
of conditions, calibration, ...) may impact differently the probability of success
to find the right groups from an algorithm to another. We are then confronted
with the choice of “the” right algorithm to choose given some minimal assumptions
on the data distribution. In these notes we present some observations and partial
results about towards an answer to the problem of algorithm design. For the sake
of exposition, we consider that the observations can be modelled as

x = µ+ ϵ

where µ ∈ Rn represent the “true” positions of the celestial objects, and ϵ ∼ N (0,Σ)
is some centered, gaussian noise. Suppose we are given other set of observations
obtained from another set of measurements, but without labelling, i.e:

y = τ∗µ+ ϵ′

where τ∗ is an unknown permutation matrix, and ϵ′ ∼ N (0,Σ), where ϵ′ is indepen-
dent from ϵ. The problem of cross-matching is to devise an algorithm (as efficient
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as possible) to make a reasonable guess on τ∗ only based on observations x1, · · · , xn
and y1, · · · , yn.

To further simplify the presentation, we here suppose that Σ = Id. Interpreting
µ and τ as parameters, a first approach consists in maximizing the likelihood over
these parameters. Given the assumptions on the observations, the log-likelihood is
proportional to L(x, y, τ, µ) =

∑n
i=1∥xi − µi∥2 + ∥yτ(i) − µi∥2. Hence one aims to

solve

max
τ,µ

L(x, y, τ, µ) = max
τ

(
max
µ

L(x, y, τ, µ)
)

One can maximize each term of L(x, y, τ, µ) to get

argmax
µ

(
∥xi − µi∥2 + ∥yτ∗(i) − µi∥2

)
=
xi + yτ∗(i)

2

Yielding

argmax
τ,µ

L(x, y, τ, µ) = argmax
τ

n∑
i=1

∥xi − (
xi + yτ∗(i)

2
)∥2 + ∥yτ∗(i) − (

xi + yτ∗(i)

2
)∥2

= argmax
τ

n∑
i=1

∥xi − yτ∗(i)∥2

The solution of the above optimization problem can then be interpreted as the most
probable permutation given the empirical observations (and the assumptions made
on their distribution). This search can be formulated as solution Integer Program
(IP):

(1) min
X∈U

(Tr(W tX))

where U is the set of matrices of size n×n with entries in {0, 1} such that every row
and every column has at most one non zero entry, and W is the matrix of distances.
Problem 1 can be relaxed (i.e. consider real values in [0, 1] for the coefficients of X),
and the solutions would still be integral because the constraints are unimodular,
and solving the assignment problem can be performed in O(n3), with the Hungarian
algorithm.

Such formulation can be extended to several catalogues of observations [5], where
now the MLE aims to maximize the probability over partitions of observations into
disjoint subsets. A subset with multiple elements is interpreted as the hypothesis that
these elements in the subset are observations of the same object in the sky. Namely,
a subset containing a single element is to be thought of as the only observation
amongst all the catalogs for that object. Despite desirable theoretical properties
of the MLE estimator (e.g. efficiency, and consistency, ...), we see two at least two
reasons that could be argued against its dominance over other algorithms from the
standpoint of obtained a correct matching. First, the problem of cross matching
is performed for a fixed set of catalogues: the number of observations per celestial
object is low, and all the aformentioned properties of the MLE are asymptotic.
Second, for a fixed number of observations, some algorithms could have better
probability of success (even among parametrized algorithms of similar complexity).
Depending on the distribution priors, some algorithms may be more desirable than
the MLE1.

1Our investigation builds upon numerical experiments following the work exposed in [2, 3].
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From a more concrete standpoint, suppose we start from formulation 1. One may
choose to replace the weights by Wij = |xi − yj |k where k is a positive integer (or
more generally Wij = J(xi − yj) where J is a reasonable function, e.g.. convex and
symmetric). Does the choice of k (resp. J) have an impact on the quality of the
solution, i.e. the probability that the obtained permutation is τ∗? If it does, which
value of k (resp. J) should one prefer?

2. Example with one-dimensional observations

To illustrate the problem, consider the simple setup where the observations
x1, · · · , xn and y1, · · · , yn are reals lying in a given interval I ⊆ R. We suppose that
each xi is an observation of a random variable of mean µi and yi of mean µτ∗(i).
The cross-matching problems consists in estimating τ∗ from these observations, to
pair the observations of the same object together. The design of the algorithm only
has only partial information about their distribution (e.g., we suppose we know the
observations are gaussians, but the algorithm does not have access to the means
µi’s).

A possible formulation to estimate τ∗ is the following surrogate problem

(2) min
τ∈Sn

n∑
i=1

J(xi − yτ(i))

where J : R → R is a reasonable function, namely convex and centered (J(0) = 0).
As mentioned in the previous section, note that for J : x 7→ x2, this formulation
is equivalent to maximizing the log-likelihood for measurement noise that are i.i.d
normal gaussians, and Problem 2 corresponds to the change to Wij = J(xi − yj) in
Problem 1. In the case of one-dimensional observations, it turns out the solution
of Problem 2 can be obtained simply by sorting the lists x1, · · · , xn and y1, · · · , yn,
and matching them by rank. In particular, the choice of the “parameter” J has no
impact on the solution: any instance gives the same solution for every choice of J ,
the one returned by the ranking algorithm. This follows from a simple generalization
of the rearrangement inequality that we state below.

Proposition 1. If J : R → R+ is convex and J(0) = 0 then solving Problem 2
matching is the same as sorting the observations and matching them by their rank.
In these conditions, the choice of a function J verifying these assumptions has no
impact on the solution(s) obtained by solving Problem 2, and can be obtained in
O(n log n).

Lemma 1. Let J : R → R be a convex function such that J(0) = 0. Then J is
superlinear, i.e for any (x, y) ∈ (R>0)

2, J(x+ y) ≥ J(x) + J(y).

Proof. Since J(0) = 0, by convexity we have.

(3) ∀t ∈ [0, 1],∀x ∈ R, J(tx) ≤ tJ(x)

Now, let x and y be positive reals.

J(x) + J(y) = J(
x

x+ y
(x+ y)) + J(

y

x+ y
(x+ y))

≤ x

x+ y
J(x+ y) +

y

x+ y
J(x+ y)

≤ J(x+ y)

where the second inequality follows from Eq. 3. □
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Lemma 2 (Generalization of the rearrangement inequality). Let J : R → R+ be a
convex function such that J(0) = 0. Let x1, · · · , xn and y1, · · · , yn be ordered reals,
i.e. x1 ≤ · · · ≤ xn and y1 ≤ · · · ≤ yn. Then for any permutation τ ∈ S(n):

n∑
i=1

J(xi − yi) ≤
n∑
i=1

J(xi − yτ(i))

Proof. Let J : R → R+ be a convex function such that J(0) = 0. For any positive
integer n, and given reals x1, · · · , xn, y1, · · · , yn and permutation τ ∈ S(n), let
Sn(τ) :=

∑n
i=1 J(xi − yτ(i)). We give a proof by induction on n.

Base case: (n = 1). The property is verified as J(x1 − y1) ≤ J(x1 − y1).

Induction step: Suppose that at rank n ≥ 1, for any ordered reals x1 ≤ · · · ≤ xn ≤
xn+1 and y1 ≤ y2 ≤ · · · ≤ yn ≤ yn+1, for any τ ∈ S(n), Sn(Id) ≤ Sn(τ). We will
prove by contradiction that for every τ ∈ Sn+1, Sn+1(Id) ≤ Sn+1(τ). Suppose now
that there exists τ ∈ Sn+1 such that Sn+1(Id) > Sn+1(τ). We then consider the
two following cases:

- if τ(n+ 1) = n+ 1 then we have Sn(τ) < Sn(Id) which is incompatible with the
induction hypothesis.

- if τ(n + 1) ̸= n + 1. Then let d = xn+1, b = yn+1, c = yτ(n+1), a = xτ−1(n+1)

Using Lemma 1 J(a− b) = J(a− c+ c− b) ≥ J(a− c) + J(c− b), and J(d− c) ≥
J(c− b) + J(d− c). Summing both inequalities and using the nonnegativity of J
gives:

J(a− b) + J(d− c) ≥ J(a− c) + J(c− b) + J(d− c)

≥ J(a− c) + J(c− b) + J(d− b) + J(b− c)

≥ J(d− b) + J(a− c)(4)

x1
•

x2
•

· · ·
•

xτ−1(n+1)

•
· · ·
•

xn+1

•

•
y1

•
y2

•
yτ(n+1)

• • •
yn+1

(a) Permutation τ

x1
•

x2
•

· · ·
•

xτ−1(n+1)

•
· · ·
•

xn+1

•

•
y1

•
y2

•
yτ(n+1)

• • •
yn+1

(b) Permutation τ ′ with better

cost

Since τ(n+ 1) ̸= n+ 1, then n+ 1 ̸= τ−1(n+ 1) (τ−1 is injective). Let τ ′ ∈ Sn+1

such that τ ′(i) = τ(i) for i ∈ {1, · · · , n} − {τ−1(n + 1)}, τ ′(n + 1) = n + 1 and
τ ′(τ−1(n+ 1)) = τ(n+ 1).

Inequality 4 gives

J(xτ−1(n+1)−y τ(n+ 1)︸ ︷︷ ︸
τ′(τ−1(n+1))

)+J(xn+1−yn+ 1︸ ︷︷ ︸
τ′(n+1)

) ≤ J(xτ−1(n+1)−yn+1)+J(xτ−1(n+1)−yn+1)

As τ and τ ′ are equal on {1, · · · , n} − {τ−1(n+ 1)}
Sn+1(τ

′) ≤ Sn+1(τ) < Sn+1(Id)

But since τ ′(n + 1) = n + 1, we would obtain Sn(τ
′) < Sn(Id) after substracting

J(xn+1 − yn+1), which is a contradiction with the induction hypothesis. □



NOTES ON ALGORITHM DESIGN FOR PROBABILISTIC CROSS-MATCHING 5

Remark 1. This result can be extended to observations of points on the one-
dimensional sphere instead on the real line, by considering angular positions. An
alternate proof can be given as follows, using simple properties of strictly convex
sets.

Without loss of generality, suppose that the true directions of observations (ex-
pected directions) can be matched with the identity, i.e. τ∗ = Id. The event that
τ = Id can be written as:

ψ2
11 + ψ2

22 ≤ ψ2
12 + ψ2

21

First note that for observation on the 1D sphere, ψ21 = ψ11 − ψ12 + ψ22 (relation
between angles of observations).

Let us consider the set Ωk defined as

Ωk = {(x, y, z) ∈ R3 : |x|k + |y|k ≤ |z|k + |x+ y − z|k}

We prove the following property on the sets Ωk: ∀k > 1, Ωk = Ω2.
Let us have a look at the border of Ωk, i.e

∂Ωk = {(x, y, z) ∈ R3 : |x|k + |y|k = |z|k + |x+ y − z|k}

Then description of Ωk can be re-parametrized: Let x, y be fixed. Then we consider
the change of variable: z 7→ η = (x− z) so that:

∂Ωk = {(x, y, η) ∈ R3 : ∥(x, y)∥k = ∥(x− η, y + η)∥k}

Now again, let (x, y) be fixed in R2. Then the equation ∥(x, y)∥k = ∥(x− η, y+ η)∥k
can be interpreted as the intersection between the k-ball of radius ∥(x, y)∥k and the
line directed by the vector (−1, 1). When k > 1, the k-ball is strictly convex and this
problem has only two solutions given by η = 0 and η = y − x. This shows that all
the sets Ωk are equal when k > 1.

The previous analysis does not extend to the multidmensional case (d > 1).
We will demonstrate this using the toy example of two observations by catalogue.
Suppose, without loss of generality for the analysis, that τ∗ = Id. In these conditions,
the event that the permutation τ obtained by an algorithm solving Problem 1 is

(5) (x, y) ∈ Ω∥.∥ ⇐⇒ ∥x1 − y1∥+ ∥x2 − y2∥ ≤ ∥x1 − y2∥+ ∥x2 − y1∥

Hence, PD(Ω∥.∥) represents the probability of recovering the true permutation, when
the observations follow a the distribution D. Motivated by a pertinent choice of a
distance function for the algorithm, this suggests to consider

(6) sup
p∈N

PD(Ω∥.∥p
)

We observe that Problem 6 has a solution among p-norms (including ∞-norm). This
can be seen by setting up := PD(Ω∥.∥p

). up is a bounded sequence, so it either has
a maximum, or has a subsequence that converges to its supremum. In the latter
case, this subsequence is of the form ∥.∥ϕ(p) where ϕ is strictly increasing. As ∥.∥p
converges to ∥.∥∞, the solution of Problem 6 is either some ∥.∥p0 for a positive
integer p0, or it is the ∞-norm. In the next section we prove the existence of a
solution among a more general class of function.
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3. Existence of an optimal solution in the general case

We present in this section a result of existence of an optimal solution that
maximizes the probability to recover the true permutation matrix in the case of
bounded support distributions. In the following, we adopt the following notations:

• H refers to the set of non-negative symmetric functions from Rd to R+

which are strictly increasing on R+.
• LK the subset of H of functions with Lipschitz constant bounded by K.
• UK,L the subset of functions of LK with a uniform lower bound L on the
increasing ratio.

In the following let ψij refer to the vector of differences xi− yj ∈ Rd. For a function
h ∈ H, let τh(ψ) be the solution of Problem 1 with Wij = h(ψij). In order to
formulate the search of a good candidate h, we consider the following optimization
problem

(7) sup
h∈UK,L

Pψ(τh(ψ) = τ∗)

Proposition 2. For all fixed K ≥ 0 and L ≥ 0, Problem 7 has a solution in the
case of bounded distributions, i.e. ∃h∗ ∈ UL,K

Pψ(τh∗(ψ) = τ∗) = max
h∈UK,L

Pψ(τh(ψ) = τ∗) = sup
h∈UK,L

Pψ(τh(ψ) = τ∗)

Proof. The set UK,L is compact as a consequence of the Arzelà-Ascoli Theorem.
The event τh(ψ) = τ∗ can be described as:

(8) Ωh =
⋂
τ∈Sn

{ψ ∈ Rn×n×d :
n∑
i=1

h(ψiτ∗(i)) ≤
n∑
i=1

h(ψiτ(i))}

Remark that it is sufficient to prove that the volume map h 7→
∫
Ωh
dψ is continuous,

since for any distribution ϕ,

|
∫
Ωh

ϕdψ −
∫
Ωh′

ϕdψ| ≤
∫
Ωh−Ωh′

|ϕ|dψ +

∫
Ωh′−Ωh

|ϕ|dψ ≤
∫
Ωh∆Ωh′

dψ

because by assumption the right hand side integral could be made arbitrarily small
when h is close to h′. Let Ωh,σ be defined as:

(9) Ωh,τ = {ψ ∈ Rn×n×d :
n∑
i=1

h(ψiτ∗(i)) ≤
n∑
i=1

h(ψiτ(i))}

such that Ωh =
⋂
τ∈Sn

Ωh,τ . To prove that the volume of Ωh is continuous, we will
restrict the study to one Ωh,σ using the following claim:

Claim 1. If h 7→
∫
Ωh,τ

dψ is continuous for any τ ∈ Sn then h 7→
∫
Ωh
dψ is

continuous.

Let σ ∈ Sn, we want to show that h 7→ (
∫
Ωh,τ

dψ = vol(Ωh,τ )) is continuous. Let

g be a function in H∩LK . It suffices to prove that |vol(Ωh+ϵg,τ )− vol(Ωh,τ )| can be
made arbitrarily small if ϵ is small enough. Note that |vol(Ωh+ϵg,τ )− vol(Ωh,τ )| ≤
vol(Ωh+ϵg,τ∆Ωh,τ ) , where ∆ is the symmetric difference operator between two sets.
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By symmetry, it is enough to look at the volume of Ωh+ϵψ,τ −Ωh,τ , which is the set
of points of Rn×n×d such that both of the following inequalities hold:

n∑
i=1

h(ψiτ∗(i)) + ϵg(ψiτ∗(i)) ≤
n∑
i=1

h(ψiτ(i)) + ϵg(ψiτ(i))

n∑
i=1

h(ψiτ∗(i)) ≥
n∑
i=1

h(ψiτ(i))

Therefore, it is included in the set of points ψ verifying:

0 ≤
n∑
i=1

h(ψiτ∗(i))− h(ψiτ(i)) ≤ ϵ

[
n∑
i=1

g(ψiτ(i))− g(ψiτ∗(i))

]

Since the variables ψij are bounded, we can further limit the study to the set:

0 ≤
n∑
i=1

h(ψiτ∗(i))− h(ψiτ(i)) ≤ ϵ

To simplify the notations, let ui = ψiτ∗(i), vi = ψiτ(i), and § be the support
of the distribution of the ψ (S is bounded since the observations have bounded
observations). Using this parametrization let C be the set defined as:

C := {(u, v) ∈ Sn×d×2 : 0 ≤
n∑
i=1

h(ui)− h(vi) ≤ ϵ}

Now, let αi(xi, yi) = h(ui)− h(vi) so that

C := {(u, v) ∈ Sn×d×2 : 0 ≤
n∑
i=1

α(ui, vi) ≤ ϵ}

We now claim that Hn×2d(C) = O(ϵ). Let M be a real such that the 2-ball of radius

M contains C and let A := {(α1, · · · , αd) ∈ [0,M ]d : 0 ≤
∑d
i=1 αi ≤ ϵ} then clearly

Hd(A) ≤ ϵC(M,d) where C(M,d) is a function of M and d only.
Now, let Biαi

:= {(ui, vi) ∈ S2 : h(ui) − h(vi) = αi}. By assumption on h,

H1(Biαi
) ≤ H1(S). Hence the counter-image:

C =
⋃

(α1,···αd)∈A

B1
α1

× · · · × Bdαd

verifies:

H2d(C) ≤ Hd(A).H1(B1
α1
). · · · .H1(Bdαd

)

≤ ϵC ′(M,H1(S), d)

□
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4. Correct matching: lower bounds in the Gaussian case

We provide here some guarantee of obtaining the correct matching solving
Problem 1 as a function of p that parametrizes the choice of the p-norm. Recall
that Wij = |xi − yj |p is the matrix of weights in Formulation 2.

Notations. For z ∈ R+ and n ∈ N, zn̄ := z(z + 1) · · · (z + n− 1), with z0̄ := z. erf

is the function erf(x) = 2√
π

∫ x
0
e−t

2

dt. For a matrix M , ∥M∥∞ := maxij |Mij | and
∥M∥1 :=

∑
ij |Mij |. We say that a n× n matrix M with is diagonally dominated

provided for every (i, j) ∈ [n]2, Mii ≤Mij .

Lemma 3. Given the assumptions on the distribution of Section 1 with Σ = σId,

E[Wij ] =

d∑
k=1

2p/2σ̂p√
π

Γ(
p+ 1

2
) exp(−r(k)ij )Φ(

p+ 1

2
,
1

2
, rkij)

where

• Γ is the gamma function

• Φ : (a, b, z) 7→
∑+∞
n=0

an̄

bn̄n!z
n the hypergeometric function.

• r
(k)
ij =

(µ
(k)
i −µ(k)

j )2

2σ̂2

• σ̂ = 2σ

Proof. E[Wij ] is the p-th raw absolute moment of a gaussian of mean µ
(k)
i − µ

(k)
j

and variance σ̂ = 2σ. Similar manipulations as in [6, Page 3] can be performed to
reach the claimed result. □

We now turn our attention to the Linear Program 1, and confirm that by replacing
the matrices of distances between their expectation, the solution is given by τ∗. In
the vocabulary of linear programming, this is equivalent to saying that the objective
vector E[W ] is in the normal cone at τ∗. We prove this by showing that such matrix
is diagonally dominated.

Proposition 3. E[W ] is in the normal cone at τ∗ for Problem 1.

Proof. We can suppose without loss of generality for the analysis that τ∗ = Id, as
the following reasoning can be extended to any τ∗ after composition in the search
space by (τ∗)−1. We prove that E[W ] is a diagonally dominated matrix, which is
trivially in the cone at the identity.

To show that for every (i, j), E[Wii] ≤ E[Wij ], let ∆ij := exp(−rij)Φ(p+1
2 , 12 , rij).

Then it is clear, using Lemma 3, that ∆ is diagonally dominated iff E[W ] is. To
prove that ∆ij is diagonally dominated, we next show that the function:

Fa,b(z) : z 7→ exp(−z)Φ(a, b, z)

is decreasing for some values of a and b. By definition, Fa,b(.) is smooth and:

F ′
a,b(z) = exp(−z)

∞∑
n=0

Vn
zn

n!
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where Vn := an+1

bn+1
− an̄

bn̄ . Hence

Vn ≥ 0 ⇐⇒ an+1 − an̄(b+ n) ≥ 0

⇐⇒ an̄((a+ n)− (b+ n)) ≥ 0

⇐⇒ an̄(a− b) ≥ 0

So for a = p+1
2 and b = 1

2 , a− b ≥ 0 which proves that Vn ≥ 0.
We supposed that τ∗ = Id hence rii = 0 ≤ rij for all {i, j}. Due to F k+1

2 , 12
being

increasing, ∆ is diagonally dominated. □

Lemma 4. Let r > 0 and σ > 0. The function f : R → R

p 7→ 2p/2σ̂p√
π

Γ(
p+ 1

2
) exp(−r)Φ(p+ 1

2
,
1

2
, r)

is strictly increasing.

Theorem 1 ([4]). Let d be a positive integer and let µ be a centered Gaussian
measure on Rd. Let A ⊆ Rd and B ⊆ Rd be two convex sets that are symmetric
about the origin. Then

µ(A ∩B) ≥ µ(A)µ(B)

The following proposition presents an example of lower-bound for the probability
of obtaining the correct matching as a function of p. This bound is quite pessimistic,
as it measures the probability of the distance matrix to stay in a cone of diagonally
dominated matrices.

Proposition 4. There exists a constant C depending only on the distance pairs (|µi−
µj∥2)(i,j)∈[n]2 such that for any σ ≤ C the probability that the solution of Problem 1

is the correct matching is bounded from below by (1− 4maxi,j Var(Wi,j)

mini̸=j(E[Wij ]−E[Wii])
2 )n

2

.

Proof. Again, we can suppose w.l.o.g for the analysis. that τ∗ = Id. For convenience,

let Up :=
2p/2σ̂p
√
π

and consider

ϵ = min
p∈N,i̸=j

(E[Wij ]− E[Wii])/2

Recall that Wij = ∥xi − yj∥pp and that E[W ] is diagonally dominated: ϵ is chosen
such that i) ϵ is positive and independent of p, ii) any perturbation (coefficient-wise)
of E[W ] by ϵ is still diagonally dominated. In other words maxi,j |Wij − E[Wij ]| ≤
ϵ =⇒ W ∈ N (Id), giving in probability

P(W ∈ N (Id)) ≥ P(max
i,j

|Wij − E[Wij ]| ≤ ϵ)

We will now lower bound the right hand side by invoking the Gaussian Correlation
Inequality (GCE) stated in Theorem 1. Each variable Wij − E[Wij ] is a gaussian
centered random variable, so the vector obtained by stacking all the n2 coordinates

still is, and the set {x ∈ Rn2

: for every i, |xi| ≤ ϵ} is convex and symmetric about
the origin. Using the GCE we obtain

P(max
i,j

|Wij − E[Wij ]| ≤ ϵ) ≥
∏

i,j∈[n]2

pi,j,ϵ

where pi,j,ϵ := P(|Wij − E[Wij ]| ≤ ϵ) = 1 − P(|Wij − E[Wij ]| ≥ ϵ). Chebyshev’s

inequality pi,j,ϵ ≥ 1− Var(Wij)
ϵ2 . In order to obtain the final inequality, one comment is
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(a) n = 5 (b) n = 10 (c) n = 15

Figure 1. Monte-Carlo simulations (10000 samples, σ = 0.2,
mini ̸=j∥µi − µj∥2 = 7) of empirical probability to recover the
true permutation, as a function of the parameter p. The empirical
probability of success increases fast as a function of k (and decreases
fast as a function of n) as suggested by the lower bound.

in order: we can make Var(Wij) arbitrarily small when σ → 0 so that 1− Var(Wij)
ϵ > 0

for all pair (i, j) and we can multiply all the inequalities together. This can be seen
from an asymptotic development of ϕ for fixed parameters a and b, as stated in [1,
Page 508]:

Φ(a, b, z) ∼
z→+∞

Γ(b)

(
ezza−b

Γ(a)
+

(−z)−a

Γ(b− a)

)
Given

Var(Wij) = E[W 2
ij ]− E[Wij ]

2

= E[ψ2p
ij ]− E[ψpij ]

2

= H(rij , 2p)−H(rij , p)
2

≤ H(rij , 2p)

≤ 2pσ̂2p

√
π

Γ(
2p+ 1

2
)

d∑
i=1

Φ(−p, 1
2
,−r(k)ij )

it is now clear that Var(Wij) →
σ→0

0 as rij =
(µi(k)−µ(k)

j )

σ̂2 and σ̂ = 2σ. The last

inequality is in fact an equality, corresponding to the equality holding for c > −1:

exp(−c)Φ(a+ 1

2
,
1

2
, c) = Φ(−a

2
,
1

2
,−c)

.
□

The numerical simulations seem to suggest that for a regime of σ that is suffi-
ciently small, the infinity norm dominates among the p-norms to recover the true
permutation with largest probability. This is consistent with the increasing nature
lower-bounds as a function of p.
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